Contoh Soal Trigonometri Kelas 10 - Trigonometri dari bahasa Yunani trigonon = "tiga sudut" dan metron = "mengukur"[1] adalah sebuah cabang matematika yang mempelajari hubungan yang meliputi panjang dan sudut segitiga. Bidang ini muncul di masa Hellenistik pada abad ke-3 SM dari penggunaan geometri untuk mempelajari astronomi. Perbandingan Trigonometri Pada Segitiga Sebuah segitiga dengan salah satu sudutnya berupa Sisi AB merupakan sisi miring segitiga Sisi BC merupakan sisi depan sudut Sisi AC merupakan sisi samping sudut Di sini kita akan mengenal istilah matematika baru, yaitu sinus sin, cosinus cos, tangent tan, cosecan csc, secan sec dan cotangent cot, yang mana sinus merupakan kebalikan dari cosecan, cosinus kebalikan dari secan dan tangent kebalikan dari cotangent. Sinus, Cosinus dan Tangent digunakan untuk menghitung sudut dengan perbandingan trigonometri sisi di segitiga. Dengan gambar segitiga diatas, nilai Sinus, Cosinus dan Tangent diperoleh dengan cara sebagai berikut Sudut Istimewa Berikut ini nilai sin, cos, dan tan untuk sudut istimewa 3 Dalam Kuadran Sudut dalam suatu lingkaran, memiliki rentang 0° – 360°, sudut tersebut dibagi menjadi 4 kuadran, dengan masing-masing kuadran memiliki rentang sebesar 90°. - Kuadran 1 memiliki rentang sudut dari 0° – 90° dengan nilai sinus, cosinus dan tangent positif. - Kuadran 2 memiliki rentang sudut dari 90° – 180° dengan nilai cosinus dan tangen negatif, sinus positif. - Kuadran 3 memiliki rentang sudut dari 180° – 270° dengan nilai sinus dan cosinus negatif, tangen positif. - Kuadran 4 memiliki rentang sudut dari 270° – 360° dengan nilai sinus dan tangent negatif, cosinus positif. Perhatikan tabel trigonometri di bawah ini Identitas Trigonometri Dalam suatu segitiga siku-siku, selalu berlaku prinsip phytagoras, yaitu . Pada materi ini, prinsip phytagoras ini menjadi asal pembuktian identitas trigonometri sendiri. bagi kedua ruas dengan , diperoleh persamaan baru . Sederhanakan dengan sifat eksponensial menjadi . Dari persamaan terakhir, subtitusi bagian yang sesuai dengan perbandingan trigonometri pada segitiga, yaitu dan , sehingga diperoleh atau bisa ditulis menjadi . Dari identitas yang pertama, dapat diperoleh bentuk lainnya, yaitu bagi kedua ruas dengan , diperoleh dimana dan , sehingga diperoleh Bentuk ketiga yaitu dibagi dengan menjadi , dimana dan , sehingga diperoleh persamaan . Contoh Soal Trignometri Kelas 10 Pada suatu lingkaran dibuat sebuah segi delapan beraturan seperti gambar di bawah. Jari-jari lingkaran adalah 12 cm. Tentukan a panjang sisi segi-8 b kelililing segi delapan tersebut! Pembahasan Segi delapan tersusun dari 8 buah segitiga sama kaki, dengan kedua kakinya panjangnya 12 cm, sama dengan jari-jari lingkaran. Ambil satu segitiga, a panjang sisi segi-8 Terapkan aturan kosinus sebagai berikut b Keliling segi delapan adalah 8 kali dari panjang sisinya Soal No. 2 Dalam suatu lingkaran berjari-jari 8 cm, dibuat segi-8 beraturan. Tentukan panjang sisi segi-8 tersebut! Pembahasan n = 8 r = 8 cm Disini akan digunakan rumus jadi menentukan panjang sisi dari suatu segi-n dalam lingkaran yang berjari-jari r atau bentuk lain dengan format kedua diperoleh Soal No. 3 Nyatakan sudut-sudut berikut dalam satuan derajad a 1/2 π rad b 3/4 π rad c 5/6 π rad Pembahasan Konversi 1 π radian = 180° Jadi a 1/2 π rad b 3/4 π rad c 5/6 π rad Soal No. 4 Nyatakan sudut-sudut berikut dalam satuan radian rad a 270° b 330° Pembahasan Konversi 1 π radian = 180° Jadi a 270° b 330° Soal No. 5 Diberikan sebuah segitiga siku-siku seperti gambar berikut ini. Tentukan a panjang AC Pembahasan a panjang AC Dengan phytagoras diperoleh panjang AC b sin θ c cos θ d tan θ e cosec θ f sec θ g cotan θ Soal No. 6Sebuah marka kejut dipasang melintang pada sebuah jalan dengan sudut 30° seperti ditunjukkan gambar berikut. Jika panjang marka kejut adalah 8 meter, tentukan lebar jalan tersebut!PembahasanSegitiga dengan sudut istimewa 30° dan sisi miring 8 30° = 1/2sin 30° = BC/ACBC/AC = 1/2BC = 1/2 × AC = 1/2 × 8 = 4 meterLebar jalan = BC = 4 meterSoal No. 7Tentukan besar sudut C pada segitiga berikut! PembahasanDataAC = 5/3 √6 cmBC = 5 cmDari data yang ada bisa ditentukan besar sudut B terlebih dahuluJumlah sudut segitiga adalah 180°sehingga besar sudut C adalah∠C = 180 − 60 + 45 = 75°Soal No. 8Diberikan sebuah segitiga sama sisi ABC seperti gambar berikut. Panjang TC adalah 12 panjang sisi segitiga tersebut!PembahasanΔ ABC sama sisi, sehingga sudut A = sudut B = sudut C = 60° Jika diambil titik ATC menjadi segitiga, maka didapat gambar 60° pada segitiga ATC adalah perbandingan sisi TC sisi depan dengan sisi AC sisi miring sehinggaSoal No. 8Segitiga PQR dengan sisi-sisinya adalah p, q dan r. Jika p = 16 cm, r = 8√2 cm dan ∠R = 30° tentukan besar ∠P !PembahasanSegitiga PQR Berlaku aturan sinusBesar sudut P dengan demikian adalah 45°Soal No. 9Diketahui segitiga ABC dengan panjang AC = AB = 6 cm. Sudut C sebesar 120°.Tentukan luas segitiga ABC!Soal No. 10Segitiga samakaki ABC dengan sudut C = 30°. Jika panjang BC = 12 cm, tentukan panjang AB!PembahasanDengan aturan kosinusdiperolehSoal No. 11cos 315° adalah....A. − 1/2 √3B. − 1/2 √2C. − 1/2D. 1/2 √2E. 1/2 √3Soal Ebtanas 1988PembahasanSudut 315° berada di kuadran IV. Nilai-nilai cosinus sudut di kuadran IV memenuhi rumus berikutcos 360° − θ = cos θSehinggacos 315° = 360° − 45° = cos 45° = 1/2 √2 Soal No. 12DiketahuiPQ = 6 cm, QR = 9 cm dan ∠PQR = 120°Tentukan kelililing segitiga PQRPembahasanMencari panjang PRKeliling segitiga= 6 cm + 9 cm + 3√19= 15 + 3√19 cmSoal No. 13Seorang anak berdiri 20 meter dari sebuah menara seperti gambar berikut. Perkirakan ketinggian menara dihitung dari titik A! Gunakan √2 = 1,4 dan √3 = 1,7 jika 60 ° adalah √3, asumsinya sudah dihafal. Sehingga dari pengertian tan sudut Tinggi menara sekitar 34 No. 14Sebuah segitiga nilai dari sin β = 2/3. Tentukan nilai dari a cos βb tan βPembahasansin β = 2/3 artinya perbandingan panjang sisi depan dengan sisi miringnya adalah 2 3Gunakan phytagoras untuk menghitung panjang sisi yang ketiga sisi sampingSehingga nilai cos β dan tan β berturut-turut adalahSoal No. 15Perhatikan gambar segitiga di bawah ini!Tentukan perbandingan panjang sisi AB dan BC!PembahasanPada segitiga berlakuSehingga perbandingan AB BC = √2 √3sekian ya pembahasan tentang contoh soal trigonometri kelas 10. semoga dapat membantu
Sebuahsegitiga mempunyai panjang sisi 7 cm, 8 cm dan 12 cm. Menurut panjang sisinya tentukan jenis segitiga yang terbentuk, sertakan alasannya! SD Karena maka segitiga tersebut adalah segitiga tumpul. Jadi, segitiga tersebut adalah segitiga tumpul. 1rb+ 0.0 (0 rating) Pertanyaan serupa. Contoh soal dan pembahasan trigonometri dasar matematika SMA kelas 10. Soal No. 1 Nyatakan sudut-sudut berikut dalam satuan derajad a 1/2 π rad b 3/4 π rad c 5/6 π rad Pembahasan Konversi 1 π radian = 180° Jadi a 1/2 π rad b 3/4 π rad c 5/6 π rad Soal No. 2 Nyatakan sudut-sudut berikut dalam satuan radian rad a 270° b 330° Pembahasan Konversi 1 π radian = 180° Jadi a 270° b 330° Soal No. 3 Diberikan sebuah segitiga siku-siku seperti gambar berikut ini. Tentukan a panjang AC b sin θ c cos θ d tan θ e cosec θ f sec θ d cotan θ Pembahasan a panjang AC Dengan phytagoras diperoleh panjang AC b sin θ c cos θ d tan θ e cosec θ f sec θ g cotan θ Soal No. 4 Sebuah segitiga siku-siku. Diketahui nilai dari sin β = 2/3. Tentukan nilai dari a cos β b tan β Pembahasan sin β = 2/3 artinya perbandingan panjang sisi depan dengan sisi miringnya adalah 2 3 Gunakan phytagoras untuk menghitung panjang sisi yang ketiga sisi samping Sehingga nilai cos β dan tan β berturut-turut adalah Soal No. 5 Seorang anak berdiri 20 meter dari sebuah menara seperti gambar berikut. Perkirakan ketinggian menara dihitung dari titik A! Gunakan √2 = 1,4 dan √3 = 1,7 jika diperlukan. Pembahasan tan 60 ° adalah √3, asumsinya sudah dihafal. Sehingga dari pengertian tan sudut Tinggi menara sekitar 34 meter. Soal No. 6 Sebuah marka kejut dipasang melintang pada sebuah jalan dengan sudut 30° seperti ditunjukkan gambar berikut. Jika panjang marka kejut adalah 8 meter, tentukan lebar jalan tersebut! Pembahasan Segitiga dengan sudut istimewa 30° dan sisi miring 8 m. sin 30° = 1/2 sin 30° = BC/AC BC/AC = 1/2 BC = 1/2 × AC = 1/2 × 8 = 4 meter Lebar jalan = BC = 4 meter Soal No. 7 Diberikan sebuah segitiga sama sisi ABC seperti gambar berikut. Panjang TC adalah 12 cm. Tentukan panjang sisi segitiga tersebut! Pembahasan Δ ABC sama sisi, sehingga sudut A = sudut B = sudut C = 60° Jika diambil titik ATC menjadi segitiga, maka didapat gambar berikut. Sinus 60° pada segitiga ATC adalah perbandingan sisi TC sisi depan dengan sisi AC sisi miring sehingga Soal No. 8 Diketahui segitiga ABC dengan panjang AC = AB = 6 cm. Sudut C sebesar 120°. Tentukan luas segitiga ABC! Pembahasan Segitiga ABC adalah sama kaki. Jika diambil garis tinggi TC maka didapat gambar berikut. Menentukan panjang AT dan CT dengan sudut yang diketahui yaitu 60° Sehingga luas segitiga adalah Soal No. 9 cos 315° adalah…. A. − 1/2 √3 B. − 1/2 √2 C. − 1/2 D. 1/2 √2 E. 1/2 √3 Soal Ebtanas 1988 Pembahasan Sudut 315° berada di kuadran IV. Nilai-nilai cosinus sudut di kuadran IV memenuhi rumus berikut cos 360° − θ = cos θ Sehingga cos 315° = 360° − 45° = cos 45° = 1/2 √2 updating.. PanjangTC adalah 12 cm. Tentukan panjang sisi segitiga tersebut! Pembahasan Δ ABC sama sisi, sehingga sudut A = sudut B = sudut C = 60° Jika diambil titik ATC menjadi segitiga, maka didapat gambar berikut. Sinus 60° pada segitiga ATC adalah perbandingan sisi TC (sisi depan) dengan sisi AC (sisi miring) sehingga Soal No. 8 Diketahui segitigab= 12 cm Jadi, panjang sisi tegak segitiga siku-siku adalah 12 cm. 3. Sebuah segitiga siku-siku mempunyai ukuran sisi miring 10 cm dan sisi alas 8 cm. Berapa panjang sisi tegak segitiga siku-siku tersebut? Penyelesaian: b² = c² - a² b² = 10² - 8² b² = 100 - 64 b² = 36 b = √36 b = 6 cm Jadi, panjang sisi tegak segitiga siku-siku
Jarijari lingkaran adalah 12 cm. Tentukan: a) panjang sisi segi-8 b) kelililing segi delapan tersebut! Pembahasan Segi delapan tersusun dari 8 buah segitiga sama kaki, dengan kedua kakinya panjangnya 12 cm, sama dengan jari-jari lingkaran. Ambil satu segitiga, a) panjang sisi segi-8. Terapkan aturan kosinus sebagai berikut:
Sebuahsegitiga siku-siku mempunyai panjang alas 12 cm dan tingginya 10 cm. Hitunglah berapa luas segitiga siku-siku tersebut! Penyelesaian : L = ½ × a × t. L = ½ × 12 × 10. L = ½ × 120. L = 60 cm². Jadi, luas segitiga siku-siku tersebut adalah 60 cm². Baca Lainnya: Pengertian Kubus Dan Rumus - Rumus Kubus. 3.
PanjangSisi Ac Dari Gambar Di Atas Adalah - brainly.co.id. Sudut abc pembahasan jumlah sudut pada sebuah segitiga adalah 180 sudut siku siku besarnya 90 sehingga untuk segitiga pada soal di atas berlaku a b c 180 90 3x 2x 180 90 5x 180 5x 180 90 5x 90 x. 8 dari sebuah segitiga abc diketahui panjang ab 6 cm bc 5 cm dan ac 4 cm. Dasar trigonometri pada segitiga siku iniJadi jarak titik A ke TB adalah AP. Perhatikan segitiga sama sisi ABT dengan panjang sisinya 4 cm. Pada segitiga sama sisi yang panjang sisinya a, jarak dari titik sudut ke sisi di depannya adalah \[\mathrm{\frac{a}{2}}\]√3. Jadi, jarak titik A ke TB adalah AP = \[\mathrm{\frac{4}{2}}\]√3 = 2√3 Jawaban : B. 24. UN 2017 Panjangsisi-sisi sebuah segitiga sama sisi adalah 12 cm. Hitunglah: a. panjang garis tingginya, b. luasnya. Garis tinggi segitiga tersebut adalah . Dengan teorema Pythagoras diperoleh: Sebuah segitiga siku-siku memiliki sisi miring sepanjang 35 cm dan sisi alas memiliki panjang 28 cm. Tentukan luas segitiga tersebut! 26. 4.0. Diberikan sebuah segitiga sama sisi ABC seperti gambar berikut panjang TC adalah 12 cm PLisssssss yang baik tolong jawab nomer 7 sama nomer 8 piliss : Jadi panjang sisi segitiga adalah 8 cm. 8. AC = b = 6 Sebuah uang logam berbentuk lingkaran dengan diameter 1,4 cm. luas permukaan uang logam tersebut adalah . 5. Perhatikan data berikut!
Diketahuisuatu segitiga siku-siku dengan panjang sisi-sisinya memiliki perbandingan 3:4:5. Jika sisi yang terpanjang memiliki panjang 25 cm, tentukan keliling segitiga tersebut. Keliling dan Luas Segitiga maka kita dapat menentukan panjang BC dan panjang ab. Jadi perbandingannya adalah a b per AC = 4 per 5 kemudian kita subtitusikan yaitu
1 Panjang alas suatu segitiga 12 cm dan tingginya 5 cm. tentukan luas segitiga tersebut2. Keliling suatu segitiga adalah 51 cm dan panjang salah satu sisinya 16 cm. Jika perbandingan sisi kedua dan ketiga adalah 4 : 3, tentukan panjang sisi segitiga tersebut! 1.Rumus segitiga A/Tinggi segitiga Kemudian Saya Sangat Menyarankan Anda Untuk Membaca